9

elusive under "normal" solvolytic conditions, because cyclization is slower than trapping of 6 by the nucleophilic solvent. In our system, however, the reaction of 6 with halide ions is a reversible process, and 11 can be converted to the thermodynamically more stable isomers 2 and 4.

Acknowledgment. We thank Professor P. v. R. Schleyer for discussions and the Deutsche Forschungsgemeinschaft for financial support.

Registry No. 2a, 76173-69-8; **2b**, 76173-70-1; **2c**, 76173-71-2; **2d**, 76173-72-3; **3a**, 3355-29-1; **3b**, 75111-04-5; **3d**, 76173-73-4; **3e**, 999-79-1; **4e**, 76173-74-5; **4f**, 76173-75-6; **8**, 76173-76-7; **9**, 76173-77-8; **10**, 76173-78-9; 2-methyl-1-propene, 115-11-7; 2-methyl-2-butene, 513-35-9; 2,3-dimethyl-2-butene, 563-79-1.

Herbert Mayr,* Brigitte Seitz Inge K. Halberstadt-Kausch

Institut für Organische Chemie der Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 42, D-8520 Erlangen West Germany Received October 10, 1980

Fluoride-Induced 1,6-Elimination to *p*-Quinodimethane. A New Preparative Method for [2.2]Paracyclophane, [2.2](2.5)Furanophane and [2.2](2.5)Thiophenophane

Summary: Fluoride anion induced 1,6-elimination of [p-[(trimethylsilyl)methyl]benzyl]trimethylammonium iodide provides a convenient method for preparation of [2.2]paracyclophane, [2.2](2.5)furanophane, and [2.2]-(2.5)thiophenophane.

Sir: In the pioneering studies on p-quinodimethane,¹ Fawcett^{1a,b} and Errede^{1c} reported that the Hofmann degradation of (*p*-methylbenzyl)trimethylammonium hydroxide and also the pyrolysis of *p*-xylene afforded [2.2]paracyclophane (3) in low yields together with poly-*p*-xylylene (4). Recently, we described² a novel and versatile method for the generation of *o*-quinodimethanes, in which [*o*-[(trimethylsilyl)methyl]benzyl]trimethylammonium iodide was treated with fluoride anion at room temperature.

We now report that 1,6-elimination of [p-[(trimethylsilyl)methyl]benzyl]trimethylammonium iodide (1)³ wasalso induced by fluoride anion to furnish [2.2]paracyclophane (3) and poly-*p*-xylylene (4), either of which was

^{(1) (}a) Winberg, H. E.; Fawcett, F. S.; Mochel, W. E.; Theobald, C. W. J. Am. Chem. Soc. 1960, 82, 1428. (b) Winberg, H. E.; Fawcett, F. S. "Organic Syntheses"; Wiley: New York, 1973; Collect. Vol. V, p 883. (c) Errede, L. A.; Gregorian, R. S.; Hovt, J. M. J. Am. Chem. Soc. 1960, 82, 5218. (d) Brown, G. W.; Sondheimer, F. J. Am. Chem. Soc. 1967, 89, 7116. (2) Ito, Y.; Nakatsuka, M.; Saegusa, T. J. Am. Chem. Soc. 1980, 102,

2 H), 3.20 (s, 9 H), 4.85 (s, 2 H), 7.25 (AA'BB', 4 H).

obtained as a major product under a choice of reaction conditions. An application of this methodology to [5-[(trimethylsilyl)methyl]furfuryl]trimethylammonium iodide (5) and [5-[(trimethylsilyl)methyl]thenyl]trimethylammonium iodide (6) also gave [2.2](2.5)furanophane (7)^{1a} and [2.2](2.5)thiophenophane (8).^{1a}

ĊH₂CI

10

The simple and mild generation of p-quinodimethane resulting in the formation of [2.2]paracyclophane (3) and poly-p-xylylene (4) is illustrated as follows. To a refluxing solution of 155 mg (0.43 mmol) of [p-[(trimethylsilyl)methyl]benzyl]trimethylammonium iodide (1)³ in 10 mL of acetonitrile, was added dropwise a solution of 134 mg (0.51 mmol) of tetrabutylammonium fluoride in 10 mL of acetonitrile over 2 h. The reaction mixture was filtered to remove a small amount of insoluble poly-p-xylylene (4), and the filtrate was evaporated in vacuo. The residue was triturated with ether and filtered, and the filtrate was evaporated to give [2.2] paracyclophane (3) in 56% (25 mg) yield, which was identified by comparison of its spectral data with those of the authentic sample.¹ Similar treatment of [p-[(trimethylsilyl)methyl]benzyl]trimethylammonium iodide (1) with tetrabutylammonium fluoride at room temperature afforded 51% poly-p-xylylene $(4)^{1c}$ with ca. 6% 3. Use of p-[(trimethylsilyl)methyl]benzyl chloride (10) instead of 1 in the reaction with tetrabutylammonium fluoride in acetonitrile at reflux gave [2.2]paracyclophane (3, 29%) and poly-p-xylylene (4, 20%).

The starting material 1^3 can be readily prepared by starting with the para-selective chloromethylation of benzyltrimethylsilane (9)⁴ followed by reaction with dimethylamine and quaternization with methyl iodide of the resulting [*p*-[(trimethylsilyl)methyl]benzyl]dimethylamine (11)⁵ as shown in Scheme I.

The fluoride anion induced 1,6-elimination of [5-[(trimethylsilyl)methyl]furfuryl]trimethylammonium iodide(5)⁶ and <math>[5-[(trimethylsilyl)methyl]thenyl]trimethylammonium iodide (6)⁶ also provided a simple and convenient method for the preparation of <math>[2.2][(2.5)furanophane (7)^{1a} and [2.2](2.5)thiophenophane (8).^{1a}

On treatment of 5 with tetrabutylammonium fluoride in refluxing acetonitrile according to the procedure mentioned above, [2.2](2.5)furanophane (7) was produced in a low yield. The NMR spectrum of the reaction mixture

ĊH2NMe2

11

^{(2) 100, 1.;} Nakatsuka, M.; Saegusa, 1. J. Am. Chem. Soc. 1980, 102, 863. (3) 1: mp 229–230 °C; NMR (CD₃CN, Me₄Si) δ 0.06 (s, 9 H), 2.10 (s,

⁽⁴⁾ Hauser, C. R.; Hance, C. R. J. Am. Chem. Soc. 1951, 73, 5846. (5) [p-[(Trimethylsilyl)methyl]benzyl]dimethylamine (11) was further elaborated by lithiation at the benzylic carbon bearing the silicon group (2 equiv of TMEDA and 2 equiv of n-BuLi in THF; 0 °C to room temperature; 3 h) and subsequent alkylation to yield [p-[(α -trimethylsilyl)alkyl]benzyl]dimethylamine in good yield, of which quaternization with methyl iodide may provide a precursor of α -alkyl-p-quinodimethane. 11: bp 110-111 °C (5 mmHg); NMR (CCl₄, Me₄Si) δ 0.00 (s, 9 H), 2.03 (s, 2 H), 2.16 (s, 6 H), 3.27 (s, 2 H), 6.93 (AA'BB', 4 H).

^{(6) 5} and 6 were prepared via (dimethylamino)methylation⁷ of furfuryltrimethylsilane and thenyltrimethylsilane, which were synthesized by nickel-catalyzed coupling reaction⁸ of 2-bromofurane and 2-bromothiophene with [(trimethylsily]]methyl]magnesium chloride, respectively.
(7) Eliel, E. L.; Fisk, M. T. "Organic Syntheses"; Wiley: New York,

⁽¹⁾ Ellel, E. L.; Fisk, M. T. "Organic Syntheses"; Wiley: New York, 1963; Collect. Vol. IV, p 626.

⁽⁸⁾ Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374.

1044

indicated that 2,5-dimethylene-2,5-dihydrofuran intermediate $(12, X = 0)^9$ was generated and existed in the mixture under the reaction conditions. When the mixture of 5 and tetrabutylammonium fluoride was heated at 110 $^{\circ}$ C for 4 h in a sealed tube, cyclodimerization of 12 (X = O) initially formed took place to give a 73% yield of [2.2](2.5)furanophane (7), whose structure was confirmed by comparison of NMR and IR spectra with those reported.^{1a}

In the reaction of 6 with tetrabutylammonium fluoride¹⁰ in acetonitrile at reflux, a mixture of [2.2](2.5)thiophenophane (8, 37%) and cyclic trimer (13, 12, 14%) of 2,5-dimethylene-2,5-dihydrothiophene (12, X = S) was produced, which was separable by preparative TLC. The former was identified by comparison of its spectral data with those reported^{1a} and by its mass spectrum.¹¹ The latter was assigned by its NMR and mass spectra.¹²

Further work to prepare a variety of cyclophane derivatives by the present methodology is in progress.

Registry No. 1, 76233-23-3; 2, 502-86-3; 3, 1633-22-3; 4, 25722-33-2; 5, 76233-24-4; 6, 76233-25-5; 7, 5088-46-0; 8, 7075-88-9; 9, 770-09-2; 10, 18001-37-1; 11, 76233-26-6; 12 (X = O), 13314-90-4; 12 (X = S), 66806-34-6; 13, 65038-09-7; tetrabutylammonium fluoride, 429-41-4.

(9) Trahanovsky, W. S.; Park, M. G. J. Org. Chem. 1974, 39, 1448. (10) Use of CsF in place of tetrabutylammonium fluoride in the re-

(10) Use of Csr in place of tetrabdy animolicum futbrief in the re-action with 6 gave 8 and 13 in 43% and 17% yields, respectively. (11) 8: white needles; TLC (silica gel, 3:1 hexane–CHCl₃) R, 0.44; mp 194–197 °C (lit.^{1a} mp 194.5–196 °C); NMR (CDCl₃, Me₄Si) δ 3.04 (AA'BB' m, 8 H), 6.75 (s, 4 H); UV (C₂H₅OH) λ_{max} 245 nm (6 6.7 × 10³), 274 (5.0

 $(C_2H_5OH) \lambda_{max} 240 \text{ nm} (e 19.8 \times 10^9);$ mass spectrum, m/e (relative intensity) 330 (100), 220 (36), 110 (61).

> Yoshihiko Ito, Satoru Miyata Masashi Nakatsuka, Takeo Saegusa*

Department of Synthetic Chemistry Faculty of Engineering Kyoto University Yoshida, Kyoto 606, Japan Received September 22, 1980

Rearrangement of an Exchangeable Hydrogen during the Reduction of Maleimide with Lithium Aluminum Hydride

Summary: Reduction of maleimide with LiAlD₄ yields pyrrolidine containing five C-D bonds rather than the expected six. N-Deuterated maleimide results in pyrrolidine-3-d. These results are consistent with the migration of hydrogen from nitrogen to carbon. This is an example

^a (a) $LiAlD_4$; (b) H_2O ; (c) 5 N HCl; (d) dimethylformamide dimethyl acetal; (e) Na, S, O₈, NaOH; (f) HCN; (g) $(CF_3CO)_2O$; (h) rabbit liver homogenate.

where reduction is favored over abstraction of an active hydrogen.

Sir: Attempted preparation of pyrrolidine-2,2,3,4,5,5- d_6 by the reduction of maleimide with lithium aluminum deuteride surprisingly resulted in pyrrolidine containing only 5 C-D bonds. Although it is generally accepted that the first step in the reaction of compounds containing active hydrogen atoms with metal hydrides is the liberation of H_{2} ,¹ our findings indicate that the reduction of maleimide with LiAlH₄ does not take this course. The results are consistent with a hydrogen rearrangement from nitrogen to carbon and thus provide an example where reduction is favored over active proton abstraction.

Reduction was carried out in refluxing tetrahydrofuran with excess $LiAlD_4$ for 16 h. Quenching the reaction with either H_2O or D_2O resulted in the same product. GC-MS analysis of the N-trifluoroacetyl derivative of the pyrrolidine formed indicated that it contained 95% d_5 and 5% d_6 and the loss of deuterium from M⁺. No significant (M $-H)^+$ could be observed, indicating the presence of four deuterium atoms in the α positions of 7.

Additional evidence that the positions α to the nitrogen were completely labeled was gained by the analysis of oxidation products. Thus, 1-pyrroline (8), prepared by the sodium persulfate oxidation^{2,3} of the product, on treatment with cyanide⁴ followed by trifluoroacetic anhydride yielded 9 which, by GC-MS analysis, showed the presence of four deuterium atoms. Further oxidation of 8 by a rabbit liver homogenate³ resulted in the formation of labeled 4aminobutanoic acid (10) containing three deuterium atoms. Analysis following derivatization with dimethylformamide dimethyl acetal to form labeled methyl 4-(N,N-dimethyl-N'-formamidino) butanoate⁵ showed that 4 con-

Brown, W. G. Org. React. 1951, 6, 469-509.
 Nomura, Y.; Ogawa, K.; Takenchi, Y.; Tomoda, S. Chem. Lett. 1977, 693-696.

⁽³⁾ Callery, P. S.; Nayar, M. S. B.; Geelhaar, L. A.; Stogniew, M.;
Jakubowski, E. M. Biomed. Mass Spectrom., in press.
(4) Bonnett, R.; Clark, V. M.; Giddey, A.; Todd, A. J. Chem. Soc. 1959,

^{2087-2093.} (5) Callery, P. S.; Stogniew, M.; Geelhaar, L. A. Biomed. Mass Spectrom. 1979, 6, 23-26.